Morphometry of Mitral Valve in South Indians - A Cadaveric Study
Ilankathir.S¹, Sulochana Sakthivel²

¹Associate Professor of Anatomy, Aarupadaiveedu Medical College and Hospital, Pondicherry.
²Assistant Professor of Anatomy, JIPMER, Puducherry.

ABSTRACT

Aim: Mitral valve is a complex structure and understanding the normal anatomy of mitral valve complex is important for assessing the valve pathologies and also in mitral valve replacement surgery. Thus the present study was done on the morphometry of the mitral valve in formalin fixed human hearts.

Materials and Methods: Mitral valve was studied in 50 formalin fixed hearts procured from human cadavers. Circumference of the mitral valve, the length of the attached margin, width and thickness of the anterior and posterior leaflets were measured.

Results: Circumference of the mitral valve was 8.29 cm. Length of the anterior leaflet was 3.23 cm and the length of the posterior leaflet was 4.82 cm. Width of the anterior and posterior leaflets were 2.42 cm and 1.28 cm respectively. Thickness of anterior leaflet was 0.76 mm and that of posterior leaflet was 0.43 mm.

Conclusion: The present study provides the necessary data on the dimensions of mitral valve, which will be helpful for surgeons as well as in the manufacture of prosthetic valve.

Keywords: Mitral valve complex, Anterior leaflet, Posterior leaflet, Prostheses.

INTRODUCTION:

Mitral valve is a complex structure comprising of supporting annulus, two leaflets, chordae tendineae and papillary muscles. Mitral annulus is an area where muscular fibers of atrium and the ventricle are attached with the two leaflets – anterior and posterior.¹ Chordae tendineae from the papillary muscles are attached to both leaflets of the mitral valve.¹ The posterior leaflet is divided into three scallops (segments) by two indentations which are described as P1 (lateral segment), P2 (central segment), and P3 (medial segment).² The corresponding parts of the anterior leaflet are A1, A2 and A3 segments.³

The mitral valve is altered by various disease and disorders viz., stenosis, regurgitation, congenital valve disease, valve prolapse and acquired valve diseases - include infections, infective endocarditis & rheumatic fever and structural valve changes like stretching or tearing of the chordae tendineae, papillary muscles, fibro-calcific degeneration or dilatation of the valve annulus.⁴-⁶ Valve replacement with prosthetic heart valves is required in severe valve damage. Thus understanding the normal anatomy of mitral valve complex is of utmost
importance for assessing the valve pathologies by imaging modalities, manufacturing prosthetic valves of appropriate dimensions and in surgical correction of damaged heart valves.

Morphological studies of the mitral valve in South Indians are comparatively less and hence, the present cadaveric study is undertaken, due to its clinical importance and to explore morphometry of the mitral valve.

MATERIAL AND METHODS:

Fifty formalin fixed hearts of either sex procured from cadavers in the age group of 30 - 60 years were included in the study. Cadavers with the history of any cardiac pathology were excluded from the study. Left ventricle was laid open by making an incision on the left margin of the heart, extending up to the apex of the heart and the mitral valve was exposed. After a thorough washing with water, the cusps of the mitral valve were examined. The circumference of the annulus was measured with the help of a thread. The thread was placed along the boundary of the annulus conforming to its shape and is cut where the ends of the thread meet and then measured with a ruler after it is straightened. Digital vernier caliper was used to measure the length, width and thickness of the anterior and posterior leaflets of mitral valve. The dimensions were compared with similar studies in literature.

RESULTS:

Circumference of the annulus ranged from 6.5 - 11.5 cm. Average circumference of the annulus was found to be 8.29 cm. In 20 specimens (40%), the circumference was in the range of 7.6 - 8.5 cm. In 14 specimens (28%) it was 8.6 - 9.5 cm, and in eight specimens (16%) it was 9.6 - 10.5 cm (Fig.1).

Length of the leaflets was measured at its attached margin. Average length of the anterior leaflet of the mitral valve was 3.23 cm. In 22 specimens (44%), the range was found to be 2.0-3.0 cm and in 28 specimens (56%), it was 3.1-4.0 cm. Average length of the posterior leaflet was 4.82 cm. In 18 specimens (36%) the range was 3.5-4.5 cm and in 32 specimens (64%), it was 4.6-5.5 cm. Mean width of the anterior leaflet from the annulus to the apex was 2.42 cm. In 16 specimens (32%), it was 1.0-2.0 cm and in 34 specimens (68%), width was found to be in the range of 2.1-3.0 cm. Average width of the posterior leaflet was 1.28 cm. In 28 specimens (56%), width was in the range of 1.0-1.5 cm and in 22 specimens (44%), it was 1.6-2.0 cm. Thickness of the middle scallop of the both the leaflets was measured. The mean thickness of anterior leaflet was found to be 0.76 mm. In eight specimens (16%), it ranged from 0.50-0.60 mm, in 18 specimens (36%), it was 0.61-0.70 mm and in 24 specimens (48%), width was found to be in the range of 0.71-0.80 mm. Average thickness of posterior leaflet was 0.43 mm. In eight specimens (16%), it was 0.35-0.40 mm, in 26 specimens (52%), it was 0.41-0.45 mm and in 16 specimens (32%), it was found to be 0.46-0.50 mm.
et al. in their study on 120 cadaveric hearts found that the circumference of the mitral valve was between 7.5 and 10 cm (mean: 8.7 cm) in 55.83% of specimens. In the present study, the range was 7.6 - 8.5 cm in 40% of the cases (Fig 2).

Figure 2. Mitral valve

Red & Green lines:

Du plessis et al. reported that the annular attachment of the anterior cusp is half that of the posterior cusp. In present study, length of the attached margin of anterior leaflet was 3.23 cm and posterior leaflet was 4.82 cm. The length of the leaflet from the annulus to apex is also described in many studies as the width or the height of the leaflets. In a study done in India, the mean length of the anterior and posterior leaflet was 2.16 cm and 1.75 cm respectively. In another study, the range of the length of the anterior leaflet was 1.5 – 1.8 cm and that of the posterior leaflet was 1.0 -1.2 cm. In present study, the average width of anterior leaflet (2.2 cm) and posterior leaflet (1.28 cm)
corresponds with that of Morris, Pant et al. but differs from that of Walmsley and Mishra et al. (Table 2).

Sahasakul et al. in their study on three age groups (less than 20, 20 to 59 and ≥ 60 years) found the thickness of anterior leaflet to be 1.30, 1.60 and 3.20 mm and those for the posterior mitral leaflet to be 0.91, 1.13 and 2.04 mm respectively. Mean thickness of the middle scallops of the anterior and posterior leaflets in the present study was 0.7 and 0.4 mm respectively.

The mitral valve is damaged by various disease and disorders which could be congenital or acquired. Valve replacement is required in severe valve damage. In valve replacement surgery, the mitral valve is replaced with mechanical valve or biological (tissue) valve. Tissue valve could be allograft, autograft or xenograft. Allograft is procured from human cadaveric valves whereas autograft is from the patients' pulmonary valve, fascia lata or pericardium. Xenograft could be a porcine mitral valve or bovine pericardium.

Congenital mitral valve malformations are treated by mitral valve repair or replacement with mechanical prostheses. Tissue valves are contraindicated in children because of premature tissue degeneration. When mitral valve repair is not possible in children, implantation of mitral valve prosthesis is postponed till annular growth is achieved. Accurate knowledge about the normal anatomy of the mitral valve complex is needed in assessing the valve pathology and in the selection of valve prostheses.

CONCLUSION:

Circumference of the mitral valve was 8.29 cm. Length of the attached margin, width and thickness of the anterior leaflet of mitral valve 3.23 cm, 2.42 cm and 0.76 mm, respectively and that of the posterior leaflet were 4.82 cm, 1.28 cm and 0.43 mm, respectively. Normal function of the mitral valve complex depends on the function of the leaflets, annulus, chordae tendineae and papillary muscles. Accurate knowledge about the anatomical features of the mitral valve is essential for assessing the mitral valve pathology and in construction of prosthesis for valve replacement. We hope that the present study in the South Indians confers proper guidance in the mitral valve replacement surgery as well as in the manufacture of prosthetic valves.

REFERENCES:

5. Sakai T, Okita Y, Ueda Y, Tahata T, Ogino H, Matsuyama K. Distance between mitral

